

Summer Independent Learning

Part 1 – Compulsory content	Time: 4-6 hours			
At the start of year 13 you will be assessed on the core content from the SIL i.e. unit 1 content				
Complete the following activities using metacognitive techniques, test yourself on the content and use the unit 1knowledge booklets to mark your answers in a different colour when you have finished, improving any answers where required				
To help prepare you for your progression exam in year 13 you should watch the following videos:				
Video: How Your Memory Works Video: Spaced Practice	Video: Retrieval Practice Video: Interleaved Practice			

<u>Biological molecules – carbohydrates</u>

What is a monomer?

What is a polymer?

What is a condensation reaction?

What is a hydrolysis reaction?

The monomers of carbohydrate molecules are called

Two carbohydrates molecules chemically joined are called

Polymers of carbohydrate molecules are called

Monosaccharides

The general formula for a monosaccharide is $C_n (H_2O)_n$

This means that for every 1 carbon, there is $1 H_2O$ present

- 1. Write the formula for a monosaccharide with 3 carbons.
- 2. Write the formula for a monosaccharide with 5 carbons.
- 3. Write the formula for a monosaccharide with 4 oxygen atoms.

Triose monosaccharides:

Triose monosaccharides are recognisable due to the presence of <u>only</u> carbon atoms.
Triose monosaccharides have the general formula
The example you need to recognise is
<u>Pentose monosaccharides:</u>
Pentose monosaccharides are recognisable due to the presence of <u>only</u> carbon atoms.
Pentose monosaccharides have the general formula
The two examples you need to recognise are
<u>Hexose monosaccharides:</u>
Hexose monosaccharides are recognisable due to the presence of <u>only</u> carbon atoms.
Hexose monosaccharides have the general formula
The four examples you need to recognise are, and
••••••

What is an isomer?

•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
•••••	• • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••	•••••	•••••
••••	• • • • • • • • • • • • •	•••••	•••••		•••••			

Hexose disaccharides

They are formed when two monosaccharides are chemically joined by a <u>bond.</u>
The general formula for a hexose disaccharide is
This is because hexose monosaccharides have the formula
So when two hexose monosaccharides are chemically joined, a water molecule is removed (condensation reaction) – leaving
The 3 saccharides you must know are,,,, and
Using an equation, describe how these 3 disaccharides are formed in a condensation reaction.
Describe the functions on monosaccharides and disaccharides linked to their properties.

WJEC Medical Science Yr 12-13

The molecules above, A-E, represent different types of carbohydrates. Write the correct letter (s), A-E, to match each of the statements below.

These three molecules are monosaccharides

This molecule is a polysaccharide

This molecule is a pentose monosaccharide

This molecule is a disaccharide

These molecules contain glycosidic bonds

This molecule is a triose monosaccharide

This molecule is glyceraldehyde

This molecule is a hexose monosaccharide

This molecule is made up of two glucose monosaccharides

This molecule is found in DNA

This molecule is the monomer of glycogen and starch

Molecule C has a well-known isomer. Name this isomer (1)

Polysaccharides

A polysaccharide is formed when many monosaccharides are chemically joined together. This means there are many glycosidic bonds present in a polysaccharide.

The example of a polysaccharide you need to know is glycogen.

What is the monomer of glycogen?

Where in the body would glycogen be found?

In mammals, in the early stages of pregnancy, a developing embryo exchanges substances with its mother via cells in the lining of the uterus. At this stage, there is a high concentration of glycogen in cells lining the uterus.

(a) Describe the structure of glycogen.

(b) What is the function of glycogen?

(2)

(1)

(c) Explain why it is an advantage for glycogen to be helical in shape

d) Explain why it is an advantage for glycogen to be insoluble	(1)
e) Explain why it is an advantage for glycogen to highly branched	(1)
f) Explain why it is an advantage for glycogen to be large	(1)

Triglycerides

Draw the simplified box diagram to represent a triglyceride:

Describe the structure of triglycerides

.....

Why are triglycerides not polymers?

.....

Triglycerides are hydrophobic molecules. What does this mean?

.....

Draw the structure of glycerol acid

Draw the general formula for a fatty

Define the following terms:
Saturated fatty acid
Monounsaturated fatty acid
Polyunsaturated fatty acid

 •••••••••••••••••••••••••••••••••••••••	

Phospholipids

Draw and label the phospholipid structure	Simplified box diagram:
Describe the structure of a phospholipid	
Fatty acids on phospholipids may also be	or
What is the function of phospholipids?	
Draw and label the arrangement of phosph	olipids in the membrane bilayer:
Steroids	
What are steroids?	
Give 3 examples of steroids	

Proteins

The n	nonomers of	protein molecules	are called	
-------	-------------	-------------------	------------	--

Two protein monomers chemically joined are called.....

Polymers of protein molecules are called.....

Draw and label the structure of an amino acid

Explain how the 20 amino acids differ

How does a dipeptide form?	Amino acid Amino acid
	$\begin{array}{c} \text{Amino}\\ \text{group} \end{array} \left(\begin{array}{c} H \\ H \\ H \\ H \\ H \\ \end{array} \right) \left(\begin{array}{c} H \\ C \\ O \\ H \\ R \end{array} \right) \left(\begin{array}{c} O \\ H \\ H \\ H \\ H \\ R \end{array} \right) \left(\begin{array}{c} H \\ H \\ H \\ H \\ H \\ H \\ R \end{array} \right) \left(\begin{array}{c} O \\ H \\ H \\ H \\ H \\ R \end{array} \right) \left(\begin{array}{c} C \\ C $
How does a dipeptide break down?	Condensation H ₂ O
	Peptide bond Polypeptide chain

Describe the primary structure of a protein

Describe the secondary structure of a protein

Describe the tertiary structure of a protein

Describe the quaternary structure of a protein

Describe how a ribbon diagram can represent protein structure

Describe the functions of proteins, using 2 examples.

Enzymes

What are enzymes?

The substrate (reactant) moves toward the enzyme's active site.

he chemical reaction is triggere by the enzyme. The enzyme releases the products.

Describe the collision theory of enzyme action:

Describe the lock and key model of enzyme action

	±1	the state of state	C.T	
Describe	me	inaucea	TIT	model

Describe the effect of competitive and non-competitive inhibitors on the rate of an enzymecontrolled reaction:

Describe and explain the effect of increasing substrate concentration in the presence of inhibitors:

Describe how reversible enzyme inhibitor occurs:

Describe how irreversible enzyme inhibition occurs:

Factors affecting enzymes

Effect of temperature on the rate of an enzyme controlled reaction:

Effect of pH on the rate of an enzyme controlled reaction:

Effect of substrate concentration on the rate of an enzyme controlled reaction:

Effect of enzyme concentration of the rate of enzyme controlled reaction:

Nucleic acids – DNA and RNA

A monomer of a nucleic acid is called a

Two monomers chemically joined together is called a

Many monomers chemically joined together is called a

What does DNA stand for?

Draw a labelled DNA nucleotide

Name the 4 possible DNA bases:

Draw a labelled DNA polynucleotide strand Draw a labelled DNA double strand

The four DNA bases can be separated into 2 categories: purines and pyrimidines.

What is a purine and which bases are these?

What is a pyrimidine and which bases are these?

Guanine

 NH_2

Cytosine

Thymine

Uracil

What does RNA stand for?

Draw a labelled RNA nucleotide

Name the 4 possible RNA bases:

Draw a labelled RNA polynucleotide stra	nd Describe the	e 3 types of RNA	
		2321 2525	de
	Messenger RNA (mRNA)	Ribosomal RNA (rRNA)	Transfer RNA (tRNA)

Type of RNA	Messenger RNA (mRNA)	Transfer RNA (†RNA)	Ribosomal RNA (rRNA)
Size			
Where found?			
Shape			
Stability			

Compare and contrast the structure of DNA and RNA (5)

DNA replication - semi-conservative replication

Use the spaces underneath to illustrate the five stages in the semi-conservative replication of DNA. Draw diagrams of the five stages on the left, and describe what is happening during each stage on the right.

The genetic code

What is a gene?

What is a locus?

How many different genes to humans have?

What is a chromosome?

How many chromosomes do humans have?

What is the genetic code?

	Т	С	А	G	
		тст 🚽	TAT	TGT -	Т
-	TTC - phe	тсс		TGC - Cys	С
I		TCA ser	TAA stop	TGA stop	Α
	TTG - Ieu	TCG	TAG stop	TGG trp	G
	стт 🚽	сст –	CAT his	CGT	Т
~	СТС	CCC		CGC	С
C	CTA	CCA pro		CGA arg	Α
	CTG	CCG –	CAG – gin	CGG -	G
	ATT 🚽	ACT	AAT	AGT	Т
	ATC ile	ACC		AGC - ser	С
А	ATA	ACA	AAA - hua	AGA	Α
	ATG met	ACG -	AAG J IVS	AGG arg	G
	GTT	GCT	GAT	GGT	Т
	GTC	GCC	GAC – asp	GGC	С
G	GTA Val	GCA ala	GAA	GGA giy	Α
	GTG 🚽	GCG –	GAG glu	GGG -	G

- Use the genetic code above to write out the amino acid sequence if the DNA base sequence reads ATG GCA CAG ACG CCC CAT TCG TAG
- 2. Write out the amino acid sequence if the DNA base sequence reads ATG AGG GGG ATT CCT CAG TGT TAG

Describe the 5 key features of the genetic code:

	Т		С		A		G		
			тст —		TAT -		TGT -		Т
_	ттс 🚽	pne	тсс		TAC	tyr	TGC -	cys	С
	TTA 🚽		TCA	ser	TAA	stop	TGA	stop	Α
	TTG -	leu	TCG		TAG	stop	TGG	trp	G
	стт 🚽		сст —		CAT -	h in	CGT -		Т
6	стс		ccc		CAC -	nis	CGC		С
Ľ	СТА	leu	CCA	pro	САА —	alm	CGA	arg	Α
	CTG		ccg 🗕		CAG -	gin	CGG -	•	G
	ATT -		ACT -		AAT —		AGT -		Т
	ATC	ile	ACC		AAC —	asn	AGC -	ser	С
А			ACA	thr	ААА —	hie	AGA —	279	Α
	ATG	met	ACG —		AAG —	iys	AGG -	arg	G
	GTT		GCT -		GAT —]	GGT -		Т
C C	GTC		GCC		GAC —	asp	GGC		С
G	GTA	val	GCA	aia	GAA —]	GGA	gıy	Α
	GTG		GCG		GAG -	giu	GGG		G

Degenerate:

Non-overlapping:

Universal:

Unambiguous:

Linear:

Protein synthesis

Messenger RNA recap

What does RNA stand for?	
Describe the 3 components of an RNA nucleotide	
Name the 4 bases found in RNA	
Is RNA single or double stranded?	
Is RNA longer or shorter than DNA?	
What shape is mRNA?	
How stable is mRNA?	
How big is mRNA compared to the other RNA types?	
Where is mRNA found in the cell?	

Write the mRNA sequence complementary to the DNA sequence is CGGTAAATGCCA

Write the mRNA sequence complementary to the DNA sequence is AATAGATACAT

Write the amino acid sequence if the mRNA sequence is AUG CCG AGU ACC UA

Write the amino acid sequence of the mRNA sequence is AUG GGU GUC UAU ACG UGA

	Second letter							
		U	С	А	G			
	U	UUU UUC UUA UUA Leu	UCU UCC UCA UCG	UAU UAC UAA STOP UAG STOP/Pyl	UGU UGC UGA STOP/Sec UGG Trp	U C A G		
etter	U	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG GIn	CGU CGC CGA CGG	J C A G		
First	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU } Asn AAC } Asn AAA } Lys	AGU - Ser AGC - Ser AGA - Arg AGG - Arg	UCAG	Total P	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG Lys	GGU GGC GGA GGG	UCAG		

Transcription

Draw a diagram to illustrate the stages of transcription on the left, and describe the stages on the right.

Translation

Describe the structure of a ribosome:

Transfer RNA recap

What does RNA stand for?	
Describe the 3 components of an RNA nucleotide	
Name the 4 bases found in RNA	
Is RNA single or double stranded?	
Is RNA longer or shorter than DNA?	
What shape is tRNA?	
How stable is tRNA?	
How big is tRNA compared to the other RNA types?	
Where is tRNA found in the cell?	
Which molecule binds to tRNA at the top?	

ATP

What does ATP stand for?

What is ATP?

Draw a labelled diagram to represent the structure of ATP

Draw a diagram to represent the ATP cycle

What does ADP stand for?

What does Pi stand for?

Describe the formation of ATP

What is the energy from ATP hydrolysis used for in cells?

- 1. –
- 2. –
- 3. –
- 4. –

Explain how the structure and properties of ATP are related to its function.

- 1. 2. – 3. –
- 4. –
- 5. –

Function			
Structure			
Draw a diagram to represent the organelle			
Electron micrograph			
Name of organelle	Nucleus	Nucleolus	Nuclear envelope

Structure of human cells

Mitochondria	Rough endoplasmic reticulum (rough ER)	Smooth endoplasmic reticulum (smooth ER)	Golgi apparatus

glycolipid

phospholipid

WJEC Medical Science Yr 12-13

Phospholipid bilayer

Hydrophobic tail

Hydrophilic head

What is the plasma membrane?

Describe and explain the main constituents of the plasma membrane

Describe how the polarity of intrinsic membrane protein molecules affects their position in the membrane

The extracellular surface of extrinsic membrane proteins can be glycosylated. What does this mean?

State the term used to describe the plasma membrane structure.

Why is this term used to describe the structure of the plasma membrane?

Transport across cell membranes

List the 6 methods in which molecules can be transported across a cell membrane

The polarity of a molecule is important when a molecule is being transported across a cell membrane.

What is a polar molecule?

What is a non-polar molecule?

List the 5 factors which affect how a molecule is transported across a cell membrane.

Explain how the size of the concentration gradient affects transport across a membrane.

Explain how temperature affects transport across a membrane.

Explain how the size of a molecule affects transport across a membrane.

Explain how the thickness of the membrane affects transport across a membrane.

Methods of membrane transport

Describe what simple diffusion is and explain which types of molecules move by simple diffusion.

Describe what facilitated diffusion is and explain which types of molecules move by simple diffusion.

WJEC Medical Science Yr 12-13

Describe what osmosis is.

Describe what active transport is.

Active transport

Describe what endocytosis is.

Describe what exocytosis is.

Control of blood glucose by the endocrine system

What is the purpose of the endocrine system?

Which cells are involved in the regulation of blood glucose?

Why is it important that blood glucose is regulated?

Define the term 'glycogenesis'.

Define the term 'glycogenolysis'.

Explain how the endocrine system responds when blood glucose is too high.

Explain how the endocrine system responds when blood glucose is too low.

<u>Role of the kidney in the endocrine system – ultrafiltration and selective</u> <u>reabsorption</u>

Why is it important that the concentration of water in the blood is regulated?

Describe the process of ultrafiltration in the nephron.

Describe which molecules are part of the glomerular filtrate, and which are not.

Describe the process of selective reabsorption in the nephron.

Explain the adaptations proximal convoluted tubule (PCT) cells have for selective reabsorption

Osmoregulation

What does osmoregulation mean?

Describe how osmoregulation occurs in the loop of Henle.

WJEC Medical Science Yr 12-13

What is ADH and what does it do?

Describe how ADH enables more concentrated urine to be formed

The structure of the nervous system

Describe the role of the nervous system

Describe the general structure of the nervous system

Describe the 3 types of neurones involved in the nervous system

WJEC Medical Science Yr 12-13

Describe the structure and function of a motor neurone

<u>Transmission of a nerve impulse along an axon</u>

Describe how a nerve impulse is transmitted across an axon

Synaptic transmission

Describe how the formation of a synapse leads to depolarisation in the post-synaptic neurone:

Describe how the merging of nerve impulses is prevented:

A synapse ensures one-way flow of nerve impulses. Describe how.

Explain the role of the following in synaptic transmission:

Synaptic vesicles

Neurotransmitters (e.g. acetylcholine)

Synaptic cleft

Receptors on post-synaptic membrane

Describe the effects of chemicals on synaptic transmission

The Musculoskeletal System

What is the purpose of the musculoskeletal system?

Describe what the spinal column is

<u>Joints</u>

Name the 3 categories that joints can be classified by, giving an example for each.

Describe the structure of a synovial joint

<u>Muscles.</u>

Muscles act in antagonists pairs. What does this mean?

Describe the sliding filament theory of muscle contraction.

The Digestive System

Draw and label a diagram to show the layers of the gut wall and their relative proportions

What is the function of saliva during digestion?

What is the function of mucus during digestion?

Describe how starch is fully digested into glucose. (3 marks)

Describe how the disaccharides sucrose and lactose are digested. (2 marks)

Describe how glucose is absorbed into the blood from the ileum. (5 marks)

Digestion of proteins

Describe the chemical digestion of a protein (4)

Describe the how the endopeptidases pepsin and trypsin are activated.

Describe how glucose is absorbed by the epithelial cells of the ileum (small intestine). (5)

Lipid digestion and absorption

What are triglycerides made up of?

Where is bile produced?

Where is bile stored?

Where is bile secreted into?

Which organ produces the digestive enzymes e.g. lipase?

Where are the digestive enzymes secreted to?

What is a monoglyceride?

What is a micelle?

What is a chlylomicron?

What is the lacteal?

Describe the role of bile and lipase in the digestion of lipids.

Describe how the fatty acids and monoglycerides are absorbed into the lacteal (lymphatic capillary).

The Cardiovascular System

The cardiac cycle word fill:

1. Atrial systole

The ventricles are and the atria This increases the and decreases the in the atria, pushing the blood into the ventricles. The tricuspid and bicuspid are

2. Ventricular systole

3. Atrial and ventricular diastole

Formation of Tissue Fluid

Use the numbers – 1-5 to describe and explain what is happening at each number:

1.

2.

3.

4.

Part 2 – Highly Recommended Time: 4-6 hours
In year 13 you will continue with the unit 4 controlled assessment and
therefore should spend ample time preparing your notes for task two
 Task 2 will be completed individually, but is the only task where you'll have access to your notes. 1. In September you will have 3 hours to produce 4 leaflets detailing the action of 4 different drugs. 2. The assignment requires you to prepare notes on the 4 drugs, which you can then use in September. (I cannot provide any feedback on your notes).
What to do: Access the document entitled 'SIL assignment part 2' found on
Teams: General \rightarrow Files \rightarrow Class materials \rightarrow Unit 4 \rightarrow Task 2
Look at the example!
Using the sources of information and subject specific terminology complete the tables for the 4 drugs you have been assigned
 Useful sources of information British National Formulary (BNF) <u>https://bnf.nice.org.uk/</u> NHS Medicines A to Z <u>https://www.nhs.uk/medicines/</u> The electronic medicines compendium (EMC) <u>https://www.medicines.org.uk/emc/</u> Web MD - <u>https://www.webmd.com/</u>

How to use the EMC source quick guide!

nc	HOME	MEDICINES 🔻	COMPANIES	LATEST UPDATES
Sea Cimetidine	rch emc: Enter	medicine name	e or company <u>Advanced S</u>	GO Search >
SmPC Patient Leaflet	health professionals			Type in the name of the drug in to the search bar and press 'GO'
Name of the medicinal product Cimetidine 200mg Tablets BP . Qualitative and quantitative composition Cimetidine 200 mg Tablets Each film coated tablet contains 200 mg cimetidine Excipient: each tablet contains 9.25 mg of Lactose monohydrate, 0.19 mg	of sodium			- Make sure the tab is on SmPC as this information is aimed at health professionals and contains some useful information you can use

Summer Independent Learning:

Part 2: Preparation of notes for Unit 4 Task TWO.

Copies of the documents you have been provided with for this assignment can be found on Teams in the 'Unit 4 Medicines and treatment of disease' Channel>'Files' tab>'Class materials'>Unit 4 Task 3.

This assignment requires you to prepare notes on 4 drugs in the tables below. You will then use these notes in September for Controlled Assessment. (I cannot provide any feedback on your notes).

You have been allocated 4 drugs as shown in the list below.

Make sure you save your work on OneDrive so you can access it from college.

	Body system and drug					
Student number	ANTIBACTERIAL DRUG	CARDIOVASCULAR SYSTEM	GASTRO- INTESTINAL SYSTEM	ENDOCRINE SYSTEM	KIDNEY & EXCRETORY SYSTEM	CENTRAL NERVOUS SYSTEM
B002859	SULPHONAMIDE		OMEPRAZOLE		FURUSOMIDE	SERTRALINE
B003703	ERYTHROMYCIN			LEVOTHYROXINE	FURUSOMIDE	SERTRALINE
B002828	SULPHONAMIDE	PROPANOLOL	OMEPRAZOLE		FURUSOMIDE	
B004262	SULPHONAMIDE	PROPANOLOL				SERTRALINE
B002194	SULPHONAMIDE	PROPANOLOL	OMEPRAZOLE	LEVOTHYROXINE		
B002569	ERYTHROMYCIN		OMEPRAZOLE		FURUSOMIDE	SERTRALINE
B004021	ERYTHROMYCIN		OMEPRAZOLE		FURUSOMIDE	SERTRALINE
B003699	SULPHONAMIDE		OMEPRAZOLE	LEVOTHYROXINE	FURUSOMIDE	
B003725	ERYTHROMYCIN			LEVOTHYROXINE	FURUSOMIDE	SERTRALINE
B002252	ERYTHROMYCIN	PROPANOLOL	OMEPRAZOLE	LEVOTHYROXINE		
B002319	SULPHONAMIDE	PROPANOLOL	OMEPRAZOLE	LEVOTHYROXINE		
B002929	SULPHONAMIDE			LEVOTHYROXINE	FURUSOMIDE	SERTRALINE
B002528	ERYTHROMYCIN	PROPANOLOL		LEVOTHYROXINE		SERTRALINE
B004461	ERYTHROMYCIN	PROPANOLOL			FURUSOMIDE	SERTRALINE
B003936	SULPHONAMIDE	PROPANOLOL	OMEPRAZOLE	LEVOTHYROXINE		
B002565	ERYTHROMYCIN		OMEPRAZOLE	LEVOTHYROXINE	FURUSOMIDE	
B002533	ERYTHROMYCIN	PROPANOLOL		LEVOTHYROXINE		SERTRALINE

Key words and definitions - Complete the following table!

Key word	Definition
Agonist	
Antagonist	
Inhibitor	
Neurotransmitter	
Competitive inhibitor	
Non-competitive inhibitor	

Example:

Sources of information used: https://www.webmd.com/drugs/2/drug-11210/cimetidine-oral/details https://www.medicines.org.uk/emc/product/6026/smpc#PRODUCTINFO

Name of class of drugs		Body system affected		
Antacids		Gastro-intestinal system		
Examples and other	names of the drug (write in the na	me of the drug allocated to you from the table above)		
Cimetidine, Zabcid, T	agamet			
	is the drug since)			
Administration (now	is the drug given)			
Orally – Tablets/solu	tion, twice per day with a meal to	r a period of several weeks		
Dosage for adults				
Tablets range from 2	00mg-800mg			
Oral solution 5ml 200	Omg			
AC2.1 explain the	Mode of Action (remember spe	cification terms!)		
molecular basis of the	Cimetidine is a histamine H2-rec	eptor antagonist, which rapidly inhibits the secretion of		
	hydrochloric acid and pepsin in t	the stomach. It is a reversible, competitive antagonist which		
	means it has a similar shape to t	he agonist (histamine) and blocks it from binding to the		
	receptors on parietal cells (those	e that secrete acid)		
A.C2.2 explain how	Uses (and why it treats it)			
systems	It is used as an anti-ulcer drug, b	y blocking the H2 receptors this reduces the volume of		
Systems	gastric juice secreted and the hy	drogen ion concentration. This therefore increases the pH		
	within the stomach and allows t	he ulcer an environment in which it is able to heal rather		
	than being irritated by acidic gas	stric juices which could potentially lead to the ulcer bursting		
AC2.7 explain how	Very common/common adverse	e reactions/side effects (and why they occur)		
adverse reactions to	 Headaches, dizziness, dr 	owsiness, depression, agitation – extended action as H2		
medicines can occur	receptors also found in t	he brain where histamine is a neurotransmitter		
	• Joint or muscle pain – in	nmunological reaction		
	• Skin rash – immunologi	cal reaction		
	 Diarrhoea, nausea, const 	ipation – lowering of the stomach acid pH can cause a		
	reduction in the successf	ful digestion of some biological molecules such as		
	proteins. This can cause	e problems with digestion		
AC2.5 compare the	Interactions with other medicin	es (and how)		
interaction of	This <u>medication</u> can slow down	the removal of other medications from your body, which		
medicines	may affect how they work. Exam	pples of affected drugs include <u>metoprolol</u> , <u>propranolol</u> ,		
	tacrine, <u>warfarin</u> , <u>zaleplon</u> , <u>calci</u>	um channel blockers (such as <u>diltiazem</u>),		
	tricyclic <u>antidepressants</u> (such as <u>amitriptyline</u>), theophylline, among others. Since <u>cimetidine</u> reduces the amount of acid in your <u>stomach</u> , it may also change the			
	absorption of certain medications and affect how they work. Some examples of affected			
	drugs include <u>atazanavir</u> , <u>dasatir</u>	nib, <u>delavirdine</u> , certain azole antifungals (such		
	as itraconazole, ketoconazole), pazopanib, among others.			
Contraindications (who cannot take the drug)				
Children younger than 12 (unless directed by the doctor),				

- 1. British National Formulary (BNF) <u>https://bnf.nice.org.uk/</u>
- 2. NHS Medicines A to Z https://www.nhs.uk/medicines/
- 3. The electronic medicines compendium (EMC) <u>https://www.medicines.org.uk/emc/</u>

Name of class of dru	igs	Body system affected			
Examples and other	Examples and other names of the drug (write in the name of the drug allocated to you from the table above)				
Administration (how	<i>v</i> is the drug given)				
Dosage for adults					
AC2.1 explain the molecular basis of the action of medicines	Mode of Action (remember spe	cification terms!)			
A.C2.2 explain how medicines affect body systems	Uses (and why it treats it)				
AC2.7 explain how adverse reactions to medicines can occur	Very common/common advers	e reactions/side effects (and why they occur)			
AC2.5 compare the effects of the interaction of medicines	Interactions with other medicir	nes (and how)			
Contraindications (who cannot take the drug)					

- 5. British National Formulary (BNF) <u>https://bnf.nice.org.uk/</u>
- 6. NHS Medicines A to Z https://www.nhs.uk/medicines/
- 7. The electronic medicines compendium (EMC) <u>https://www.medicines.org.uk/emc/</u>

Name of class of drugs		Body system affected		
Examples and other names of the drug (write in the name of the drug allocated to you from the table above)				
Administration (how	v is the drug given)			
Dosage for adults				
AC2.1 explain the molecular basis of the action of medicines	Mode of Action (remember specification terms!)			
A.C2.2 explain how medicines affect body systems	Uses (and why it treats it)			
AC2.7 explain how adverse reactions to medicines can occur	Very common/common advers	e reactions/side effects (and why they occur)		
AC2.5 compare the effects of the interaction of medicines	Interactions with other medicines (and how)			
Contraindications (who cannot take the drug)			

- 1. British National Formulary (BNF) <u>https://bnf.nice.org.uk/</u>
- 2. NHS Medicines A to Z <u>https://www.nhs.uk/medicines/</u>
- 3. The electronic medicines compendium (EMC) <u>https://www.medicines.org.uk/emc/</u>

Name of class of dru	ıgs	Body system affected			
Examples and other	Examples and other names of the drug (write in the name of the drug allocated to you from the table above)				
Administration (how	<i>v</i> is the drug given)				
Dosage for adults					
AC2.1 explain the molecular basis of the action of medicines	Mode of Action (remember spe	cification terms!)			
A.C2.2 explain how medicines affect body systems	Uses (and why it treats it)				
AC2.7 explain how adverse reactions to medicines can occur	Very common/common advers	e reactions/side effects (and why they occur)			
AC2.5 compare the effects of the interaction of medicines	Interactions with other medicir	ies (and how)			
Contraindications (who cannot take the drug)					

- 1. British National Formulary (BNF) <u>https://bnf.nice.org.uk/</u>
- 2. NHS Medicines A to Z <u>https://www.nhs.uk/medicines/</u>
- 3. The electronic medicines compendium (EMC) <u>https://www.medicines.org.uk/emc/</u>

Name of class of dru	ıgs	Body system affected	
Examples and other	names of the drug (write in the na	me of the drug allocated to you from the table above)	
Administration (how	<i>v</i> is the drug given)		
Dosage for adults			
AC2.1 explain the molecular basis of the action of medicines	Mode of Action (remember spe	cification terms!)	
A.C2.2 explain how medicines affect body systems	Uses (and why it treats it)		
AC2.7 explain how adverse reactions to medicines can occur	Very common/common advers	e reactions/side effects (and why they occur)	
AC2.5 compare the effects of the interaction of medicines	Interactions with other medicir	ies (and how)	
Contraindications (who cannot take the drug)			